
FINAL PROGRAMME

IUTAM Symposium on Chemo-Mechanics Oxford, June 29 - July 2, 2025

June 29 Sunday	June 30 Monday	July 1 Tuesday	July 2 Wednesday
	08:30-09:00 Welcome		
	09:00 – 10:30 Session 1: Batteries I	09:00 – 10:30 Session 5: Batteries III	09:00 – 10:30 Session 9: Batteries IV
	C	10:30 - 11:15 offee Break & Poster	rs
	11:15 – 12:45 Session 2: Failure mechanisms I	11:15 – 12:45 Session 6: Corrosion	11:15–12:45 Session 10: Hydrogen III
		12:45 – 14:00 Lunch Break	
	14:00 – 15:30 Session 3: Hydrogen I	14:00 – 15:30 Session 7: Hydrogen II	14:00 – 15:30 Session 11: Multi-physics modelling
	C	15:30 – 16:15 offee Break & Poster	rs
	16:15 – 17:45 Session 4: Batteries II	16:15 – 17:45 Session 8: Polymers	16:15–18:15 Session 12: Failure mechanisms II
	18:15-19:15 Oxford Tour Visit		18:15 – 18:30 Closing Remarks and Best Poster Award
19:00 – 22:00 Welcome Reception	19:30–22:00 Rooftop Food & Drinks	18:30 – 19:00 Pre-drinks 19:00 – 22:00 Banquet Dinner	

Day 1 | Monday | June 30 2025

Welcome | 08:30 - 09:00

Session	Session 1 – Batteries I 09:00 – 10:30 Chair: Emilio Martinez-Paneda		
09:00	Plastic yielding and flow of lithium in a dendrite in a solid electrolyte.		
09:30	Robert M. McMeeking. University of California Santa Barbara, USA.		
09:30	Chemo-Mechanics of Anode Materials and Interfaces in Solid-State Batteries.		
10:00	Matthew T. McDowell. Georgia Institute of Technology, USA.		
10:00	Mechanics, heterogeneity, and dynamics of particle network in battery materials.		
10:30	Kejie Zhao. Purdue University, USA.		

Coffee break & Posters | 10:30 – 11:15

Session 2 – Failure mechanisms I 11:15 – 12:45 Chair: Javier Segurado		
11:15 11:45	Interfacial failure by surface and bulk diffusion. Norman Fleck. University of Cambridge, UK.	
11:45 12:15	Coupled phase field modelling of electro-chemo-mechanical challenges, lessons learned across battery degradation, corrosion and hydrogen embrittlement. Emilio Martinez-Paneda. University of Oxford, UK	
12:15 12:45	A numerical-experimental approach to understand the chemo-mechanical degradation of historical oil paintings. Emanuela Bosco. Eindhoven University of Technology, the Netherlands.	

Lunch break | 12:45 - 14:00

Session 3 – Hydrogen I 14:00 – 15:30 Chair: Gustavo Castelluccio		
14:00 14:30	Effect of elastic strains on the electrocatalytic activity of intermetallic compounds for the hydrogen evolution reaction. Javier LLorca. IMDEA Materials Institute & Polytechnic University of Madrid, Spain.	
14:30 15:00	Chemomechanical phase-field modeling of microstructural evolution and porosity during hydrogen-based reduction of iron oxides. Bob Svendsen. RWTH Aachen University, Germany.	
15:00 15:30	Hydrides in Zircaloy-4 under thermomechanical cyclic loading: characterisation, experiment and CP modelling. Fionn P. Dunne. Imperial College London, UK.	

Coffee break & Posters | 15:30 – 16:15

Session	Session 4 – Batteries II 16:15 – 17:45 Chair: Ying Zhao		
16:15	Contact loss in all solid-state Li-ion batteries via deposition of impurities.		
16:45	Vikram S. Deshpande. University of Cambridge, UK.		
16:45	Next Generation Electrochemical Technologies Enabled by Solid-State Electrolytes.		
17:15	Jeff Sakamoto. University of California, Santa Barbara, USA.		
17:15	The role of crystallography in the chemo-mechanics of battery materials.		
17:45	Anton Van der Ven. University of California Santa Barbara, USA.		

Oxford Tour Visit | 18:15 – 19:15

Rooftop Food & Drinks | 19:30 – 22:00

Day 2 | Tuesday | July 1 2025

Se	Session 5 – Batteries III 09:00 – 10:30 Chair: Vikram S. Deshpande		
	9:00	Chemo-Mechano Behaviour of Batteries: From Materials to Cells. Paul R. Shearing. University of Oxford, UK.	
08	9:30	radi K. Silearing. Onlyersity of Oxford, OK.	
09	9:30	Interfacial Mechanics in Solid-State Batteries.	
10	0:00	Neil P. Dasgupta. University of Michigan, USA.	
10	0:00	Coupled Stress and Electrochemical Effects in Garnet-Type Solid Electrolytes.	
10	0:30	X. Wendy Gu. Stanford University, USA.	

Coffee break & Posters | 10:30 – 11:15

Session 6 - Corrosion 11:15 – 12:45 Chair: Zachary D. Harris		
11:15	Predicting maritime structural corrosion with a hybrid mechano-electrochemical	
11:45	model.	
11:45	Julian A Wharton. University of Southampton, UK.	
11:45	Slip band and oxidation interactions in crack initiation and growth mechanisms in	
	nickel base superalloys.	
12:15	Philipa Reed. University of Southampton, UK.	
12:15	Multi-ionic reactive transport modeling of pitting corrosion and electrodialysis.	
12:45	Ravindra Duddu. Vanderbilt University, USA.	

Lunch break | 12:45 - 14:00

Session 7 – Hydrogen II 14:00 – 15:30 Chair: Livia Cupertino-Malheiros		
14:00 14:30	Multiscale modelling of hydrogen diffusion in iron considering the effect of dislocations.	
	Javier Segurado. Technical University of Madrid, Spain.	
14:30 15:00	Hydrogen-induced damage mechanisms in Ni-based superalloys at elevated	
	temperatures.	
	Binhan Sun. East China University of Science and Technology, China.	
15:00	Hydrogen embrittlement and fracture of hydrides in zirconium alloys.	
15:30	Hamidreza Abdolvand. Western University, Canada.	

Coffee break & Posters | 15:30 – 16:15

Session	Session 8 – Polymers 16:15 – 17:45 Chair: Bjoern Kiefer		
16:15	Multiscale Design and Characterization of Biomimetic Hydrogels: Bridging Nature's Hierarchical Structures to Advanced Functional Materials.		
16:45	Huajian Gao. Tsinghua University, China.		
16:45	Chemo-Mechanics of Biodegradable Polymers.		
17:15	Laurence Brassart. University of Oxford, UK.		
17:15	Chemo-mechanical modelling of hydrogel-based bioprinting.		
17:45	Michele Marino. University of Rome Tor Vergata, Italy		

Conference Banquet | 19:00 – 22:00

Day 3 | Wednesday | July 2 2025

Session 9 – Batteries IV 09:00 – 10:30 Chair: Matthew T. McDowell		
09:00	Multiscale chemo-mechanical modeling of lithium-ion batteries.	
09:30	Ying Zhao. Tongji University, China.	
09:30	Electro-chemo-mechanics and architecture in battery materials.	
10:00	Giovanna Bucci. Lawrence Livermore National Laboratory, USA.	
10:00	Phase-field fracture predictions for composite solid-state battery cathode	
10:30	microstructures.	
10.30	Adam M. Boyce. University College Dublin, Ireland.	

Coffee break & Posters | 10:30 – 11:15

Session 10 – Hydrogen III 11:15 – 12:45 Chair: Binhan Sun		
11:15 11:45	Understanding Hydrogen Absorption and Embrittlement of Alloys. Livia Cupertino-Malheiros. Imperial College London, UK.	
11:45 12:15	Effect of Hydrogen on Dislocation Glide. Gustavo Castelluccio. Cranfield University, UK.	
12:15 12:45	On the impact of loading rate on environment-assisted cracking susceptibility of structural metals. Zachary D. Harris. University of Pittsburgh, USA	

Lunch break | 12:45 - 14:00

Session 11 – Multi-physics modelling 14:00 – 15:30 Chair: Laurence Brassart		
14:00 14:30	Diffusive molecular dynamics simulation of magnesium hydration. Pilar Ariza. Universidad de Sevilla, Spain.	
14:30 15:00	Modeling the chemo-mechanics of cell motility and blood clotting. Alberto Salvadori. University of Brescia, Italy.	
15:00 15:30	Chemo-mechanical modelling of fracture behaviour in silicon particles during lithiation and delithiation. Wei Tan. Queen Mary University of London, UK.	

Coffee break & Posters | 15:30 – 16:15

Session 12 – Failure mechanisms II 16:15 – 18:15 Chair: Wei Tan		
16:15 16:45	In-situ, high-throughput photoelasticity measurements for investigating complex chemo-mechanical phenomena. Christos E. Athanasiou. Georgia Institute of Technology, USA.	
16:45 17:15	Bridging Chemistry and Mechanics in Solids: A Continuum Mechanics-Based Approach. Fernando P. Duda. Federal University of Rio de Janeiro, Brazil.	
17:15 17:45	Transient mechanics – Modelling degradation in deformable electronics. Raudel Avila. Rice University, USA.	
17:45 18:15	Computational chemo-mechanics with application to hydrogels, oxide layer growth, and hydrogen-promoted damage. Bjoern Kiefer. TU Bergakademie Freiberg, Germany.	

Closing Remarks and Best Poster Award | 18:15 – 18:30

End of Workshop

List of posters		
P1	Chemical degradation in rubbery network: discrete and continuum approaches. Lucas Mangas Araujo. University of Oxford.	
P2	Mechanics of polymer chains: from bond deformation to rupture. Jie Zhu. University of Oxford.	
P3	Boron segregation informed hydrogen embrittlement mitigation strategy in a two- phase lightweight steel. Xizhen Dong. Max Planck Institute for Sustainable Materials, Germany.	
P4	Bone-inspired mechanically adaptive materials by coupling stress with material synthesis Sung Hoon Kang. Korea Advanced Institute of Science and Technology, Korea.	
P5	Mechanics of liquid crystal inclusions in soft matrices. Yifei Bai. University of Oxford.	
P6	Fracture mechanics and toughening design of bioinspired composites. Kaijin Wu. University of Science and Technology of China, China.	
P7	Deciphering the interplay between wetting and chemo-mechanical fracture in α - V_2O_5 single-crystal positive electrode materials. Wan-Xin Chen. TU Darmstadt, Germany.	
P8	Chemo-mechanical interactions in aerospace smart materials: effects on structural integrity and flutter suppression. Kotaru Sudha Deepthi. Dayananda Sagar University, India.	
P9	Chemomechanical phase-field modelling of microstructural evolution and porosity during hydrogen-based reduction of iron oxides. Kartik Umate. Max Planck Institute for Sustainable Materials, Germany.	
P10	Towards intelligent design of resorbable magnesium alloys: a machine learning perspective. Vickey Nandal. Czech Academy of Sciences, Czech Republic.	
P11	Static and dynamic thermos-mechanical phase field modelling of fracture in functionally graded materials. Raghu Piska. Birla Institute of Technology and Science Pilani Hyderabad campus, India.	

P12	The effect of hydrogen on the fracture toughness of the heat-affected zone of vintage and modern pipeline steels.
	Dannisa R. Chalfoun. University of Oxford, UK
P13	Phase-field-based chemo-mechanical modelling of corrosion-induced cracking in
	reinforced concrete.
	Evzen Korec. University of Oxford, UK.
P14	A computational framework for predicting the effect of surface roughness in fatigue.
	Sara Jimenez-Alfaro. University of Oxford, UK.
P15	Understanding the oxidation behaviour of pure Tungsten in dry air.
	Rongrui Li. University of Oxford, UK.
P16	Computational prediction of failure by denting in hydrogen-charged X65 Pipe.
P17	Ratul Das. University of Oxford, UK.
	Hydrogen embrittlement re-understood: unravelling the role of hydrogen on plasticity. Alfredo Zafra. University of Oxford, UK.
	A computational study of electrolyte behaviour and reaction kinetics in cracked
P18	cathode particles.
	Sebastian Luza Vega. University of Oxford, UK.
P19	A neural network machine-learning approach for characterising hydrogen trapping
	parameters from TDS experiments.
	Nicoletta Marrani. University of Oxford, UK.
P20	Development of a hybrid high-entropy alloy/steel to mitigate hydrogen embrittlement.
	Lorea Armendariz. University of Oxford, UK.
P21	Prediction of cracking and capacity fade of lithium-ion battery electrode particles.
	Yang Tu. University of Oxford, UK.
P22	Modeling oxide layer formation in ceramic metal melt filters via phase-field
	simulations incorporating reaction-diffusion processes.
	Stephan Roth. TU Bergakademie Freiberg, Germany.
P23	Crystal plasticity influence on dissolution-driven stress corrosion cracking.
P24	Maciej Makuch. Imperial College London, UK. Diffuse interface formulations for chemo-mechanically induced degradation:
	Applications to corrosion and biocorrosion.
	Sasa Kovacevic. University of Oxford, UK.
	- caca not acontend on control of